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Abstract—Forced convection film boiling on a wedge has been investigated by means of two-phase
boundary-layer theory. It has been shown that the effect of the pressure gradient in the liquid dominates
the dynamics of the flow in the vapour layer. This is in contrast to the flow past a flat plate where no
appreciable pressure gradient exists. It has also been shown that the physical structure of the flow
changes according as the liquid subcooling is “small” or “large”. By carefully choosing different
dimensionless variables for each of these cases the physical structure of the flow was reflected in the
structure of the equations. Simple analytical solutions have thus been obtained which are accurate to
within a few per cent over the greater portion of the parameter range of interest. These results have been
checked numerically using typical values of the parameters for a water—steam system,
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dimensionless stream function in vapour;

characteristic thickness of vapour film;

actual thickness of vapour film;

enthalpy of evaporation;

thermal conductivity;
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heat transfer at the wall;

velocity components;
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skin friction coefficient ;

dimensionless stream function in liquid ;
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heat-transfer coefficient ;
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= AT Nusselt number;
Prandt! number;

= V /U, velocity ratio;

= h/d, thickness ratio;
temperature ;

~ x", external velocity;
characteristic vapour velocity;
temperature difference in vapour;
temperature difference in liquid.
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thermal diffusivity;

wedge half-angle;

liquid boundary-layer thickness;
stmilarity variable in vapour;
dimensionless height of interface;
dimensionless temperature in vapour;
absolute viscosity;
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v, kinematic viscosity;

0y density;

o, dimensionless temperature in liquid ;
g, similarity variable in liquid ;

Ty skin friction at wall;
, stream function in vapour;

¥, stream function in liquid.
Subscripts

L liquid property;

o, vapour properties;

1, small subcooling parameter;

2, large subcooling parameter.

INTRODUCTION

INvESTIGATIONS of film boiling are usually concerned
with one of the two cases of forced or free
convection. In forced convection the motion is
generated by an oncoming stream of liquid and it is
assumed that buoyancy forces are negligible, whereas
in free convection there is no prescribed flow at large
distances from the heated surfaces and the motion is
generated by the buoyancy forces within the vapour
and liquid layers. We consider here the former case,
that of forced convection.

Forced convection over a flat plate has been
analysed previously by Cess and Sparrow [1] using a
combination analytical-numerical method. They
showed that if the superheating is not too large the
inertia terms in the vapour phase may be neglected
and hence the vapour equations linearised, but they
found it necessary to use numerical results for the
liquid phase in order to determine a boundary
condition on the vapour at the interface. Their work
has been extended by Ito and Nishikawa [2] to
cover a larger range of temperatures though this
necessitated solving the equations in both phases
numerically. For flow past a flat plate there is of
course no appreciable pressure gradient in the liquid.
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For bodies of any finite thickness, however, pressure
gradients will exist in the liquid and when the flow is
of boundary-layer type this pressure gradient will be
transmitted to the vapour layer, where its effect will
be greatly enhanced because of the large density
ratio. It will be shown that this effect dominates the
dynamics of the vapour layer, and for this reason the
flat-plate solution should be regarded as somewhat
over-idealised.

The significance of pressure gradients in the liquid
has not been properly evaluated in the published
literature; for example, Hsiao er al. [3], who
considered flow past a sphere, erroneously omitted
the relevant term completely. It seems desirable,
therefore, to begin by considering the simple case of
flow past a wedge for which similarity solutions are
available. (See Fig. 1 for a sketch of the coordinate
system.)

A further contribution made in the present paper
is to explain the advantages of a careful choice of
dimensionless variables so as to reflect the true
physical structure of the flow. No attempt to do this
was made in [1] or [2], and although the solutions
obtained by those authors are formally correct they
depend heavily on computed graphs and tables. By
contrast we show that in two limiting cases,
corresponding (roughly speaking) to small and large
values of the liquid subcooling, simple analytical
solutions can be found which are accurate to within
a few per cent over the greater portion of the
parameter range of interest.

Typical values of parameters have been given for a
water steam system.

CONSERVATION EQUATIONS AND
BOUNDARY CONDITIONS

It is assumed the boundary-layer equations hold
in the liquid phase near the interface:

du oo _
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It is assumed that the properties of the liquid and
vapour are constant. The pressure gradient in (2) is
determined by the flow at the outer edge of the
boundary layer and is constant across it:

[ dp

-, @)
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At the interface between the liquid and vapour it is
required that the following quantities should be
continuous: (a) mass flow crossing the interface, (b)
tangential velocity, (c) tangential stress, (d) normal
stress, (e} temperature; there must also be an energy
balance. Within the boundary-layer approximation

these are equivalent to

cu u ,
t <,> = u.-<r'> 7
(7'1" lig (:,‘y vap
pliq = pvap (8)

T, =T,

1 0T T '
AR RN
hfg oy lig 9)’ vap.

In the vapour it is also assumed that the
boundary-layer equations hold, hence we have (1)
and (3) with vapour properties replacing liquid
properteis. However equation (8) requires that
pressure is continuous at the interface, so that
equation (2) becomes

fu  du py &
u—to—=—UU+v,—.
¢X cy Pe cy

(

The boundary conditions at the wedge surface and
in the undisturbed flow are

u=v=0 T=T,at y=0 (12)

u=U,T=T, at y = w.

SIMILARITY TRANSFORMATIONS
The problem of selecting suitable dimensionless
similarity variables now arises; this is done so that
the velocity and temperature fields are described by
order 1 dimensionless functions.
1t is expected that the liquid velocity will be of the
same order of magnitude as the free stream velocity,
hence the following variables are defined for the
liquid phase:
e s T-T,
E=¥/6, ¥ =UsF(), o) = AT (14)
Here W is the stream function so that u = UF' and

F will be an order 1 quantity as required, 4 is the
liquid boundary-layer thickness

. 2 yx\'?
o=(-— 1)
n+1 U

Substituting into (2) and (3) it follows that

(15)

2n

F'+FF' + -—(1-F?%*)=0 (16)
n+1

and

¢+ PriFp = 0. (17)

However in the vapour phase the term due to the
pressure gradient is very large because of the low
density of the vapour compared with that of the
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liquid; there is therefore no reason to expect the
vapour velocity to be of order U. Since the viscous
term in the vapour momentum equation (13) must
be important for the no slip condition to be satisfied
at the wedge surface a balance is set up between the
pressure gradient and viscous terms. If the vapour
velocity is of order ¥ and the film thickness is of
order h, this balance gives

plu2 — V!,V
0( p,x ) - 0( h )

An examination of equation (10) now shows that
the heat transferred from the wedge surface to the
interface may be accounted for in one of two ways
(a) vaporisation of the liquid or (b) conduction
through the liquid.

The cases when either (a) or (b) is dominant are
now considered.

(18)

(i) Small subcooling

Suppose first that (a} is dominant, then the
subcooling is small. In order for the relevant terms in
(10) to balance it is necessary that

kAT, %4
0( AT O(m Ay
hrgh X
where use has been made of the continuity equation

(1) to determine the order of v.
Eliminating h%/x between (18) and (19) yields

(19)

vV p, kAT,
U2 0. /lvhfg 1 v ( )
and (15), (18) and (19) give
h ) 12
7o (“—‘R,> =5, =03AT'* (1)
o Hi

where values of the coefficients have been determined
for a water-steam system. Note that for typical
values of AT, the order of V will be much larger
than U as was anticipated.
The following variables are therefore defined for
the vapour phase:
5
AT,

n=y/h ¥ =Vhf(@n), 0(n)=

Then u = dy/dy = Vf' and hence ' will be order 1
as required. Substituting into (13) and the vapour
phase equivalent of (3} it follows that

T-T,

(22)

2n 2n
rer — A 72_~ 27 2
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It remains to determine the boundary conditions
(5)-(12) in terms of the new variables. (Note that
since ¢ does not appear explicitly in the equations or
boundary conditions the interface can be taken at ¢
= 0 without any loss of generality.) These become

F(0) =B, f(no). ['(no) = C(F(0) (25),(26)

F'(0) =Dy f"(no),
Slno)+8(no) = Er'(0)  (27.)(28)

8(0) = 0(0) = 1, 6(n0) = ¢(0) =0
fO)=f'0)=0, F(o)=1.

(29)
(30)

The boundary conditions have been presented in
the form in which they will be applied; thus if the
quantities on the RHS of the equations are known
then the quantities on the LHS are the given
boundary conditions.

Simplification. The dimensionless variables have
been constructed so that E, is small when the
subcooling is small:

=58 —— (31}

N Hy ka'[; e
E, = RI,Z T
L LL, (&An) AT

Hence if AT, is sufficiently small we may neglect the
RHS of equation (28). The other parameters are

AT,

A, =&R§ = 88x 107 *AT. (32)
1]
B, = LopyS,  =2x107*ATY* (33)
P
C,=R;! =0JAT 7 (34)
D, =S, =03AT'*, (35)

where again the values of coefficients have been given
for a water—steam system. Note that AT, does not
appear in any of the parameters A, By, C;, D, since
there are no significant temperature variations in the
liquid.

The vapour phase is coupled to the liquid
boundary layer only through the boundary con-
dition applied at the interface. However C, is small
and for AT, sufficiently large the RHS of (28) is
negligible. It is then not necessary to determine the
liquid flow in order to solve the vapour equations,
although having solved the vapour equations it is
then possible to substitute back into the boundary
conditions (25) and {27) and hence solve the liquid
equations.

The physical situation is that the main body of the
vapour is travelling at such a speed relative to the
liquid that its velocity at the interface may be
neglected to a first approximation; this is due to the
effect of the large pressure gradient in the vapour.

Further, if 4, is small the non-linear terms in (23)
and (24) will be negligible and the solution of the
vapour equations may be obtained in a closed form.

Hence
67{ 1/4
n=(5)

This gives us the skin friction and heat-transfer
coefficients

(36)

Cy=D, 5770, 0= (37)

Ding’

In order to check these results (16), (17), (23) and
(24) with boundary conditions (25)-(30) have been
solved numerically at a wedge half angle of /4 for
AT, = 200 and AT, = 500. (For numerical work the
values Pr, = 0.996 and Pr, = 1.74 were used.)
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The analytic solution (36) is n, = 2.21 whereas the
numerical solutions give n, = 2.098 for AT, = 200
and 5, =2.099 for AT, =500 (in both cases AT,
= (). There may be two reasons for the discrepancy,
(1) the neglect of the inertia terms, or (ii) the neglect
of the velocity at the interface. In order to find the
next order terms a perturbation analysis may be
carried out in each case, in (i) by taking 4, as a
small parameter, and in (i1) by perturbing about the
potential flow solution F = £. Boundary conditions
on F may be obtained using the analytic solution for
fno) and f"(n,) in (25) and (27); however B, is very
small so that F(0) = O may be taken. It is found that
the effects of (ii) are much greater than the effects of
(1) and incorporating this correction then to leading
order in the small quantity C,

61‘[ 1/4 61J‘2
(5 T o]

FO) = 1 D, 6\
0= +(8n)“2<?> '

This yields the estimate no = 2.11 in satisfactory
agreement with the numerical solution.

The numerical solution for 5, decreases rapidly
when subcooling is introduced and examination of
equation (28) shows that this is to be expected. For
example, at AT, =200, A7, =3.5 the numerical
solution gives , = 1.81. Obviously it is possible to
solve the equations numerically for any value of AT,
However as AT, increases it is apparent that the
physical situation changes, the liquid conduction
term soon dominates equation (10) and the vapour
film thickness changes in order to accommodate the
given subcooling in the liquid. A different choice of
dimensionless variables would therefore seem
suitable.

(38)

where

(i) Large subcooling
Most of the heat arriving at the interface is now
conducted away through the liquid. Hence

o KA _ (kAT
h 5

It is still necessary to maintain the balance given
by equation (18), and O(J) is determined by equation
(15). Equations (39), (15) and (18) imply

|4 k,AT,\? 1 [AT,\?
Z MBS R T (2) 40
U u, \kAT 24\ AT,
h kAT, AT,
0 kAT, AT

Note that the order of V is dependent on AT, for a
given AT, and so will not in general be of order U.

Defining similarity variables in the same form
given by equation (22) and substituting into the
momentum, energy equations and boundary con-
ditions, equations (23)-(30) are obtained except that
equation (28) is replaced by

@'(0)~0'(no) = Ezf (o) (42)
and A,, B,, C,, D, are replaced by 4,, B,, C,, D,.

(39)

S, =005 (41)

Simplification. The variables have been constructed
so that E, will be small if AT, is large:
iy AT}
4] k(A’E ATE
Hence if AT, is sufficiently large we may neglect the
RHS of equation (42). The other parameters are

(43)

Pr 52 -7 AT; ¢
A, =R =78x1077( 0 44
: I : - (ATZ> o
‘ AT
B, = R,s, ﬁ9.4x10'7<-4> (45)
P AT,
- AT
C,=R;' =240 (46)
2 AT,
AT,
Dy=S, =005, 47
2 2 AT, (47)

The situation is not as in case (i) where it was
possible to solve the vapour equations without
determining the liquid boundary-layer flow, since the
solution is now dependent on the temperature
gradient in the liquid via (42). It is necessary to know
the liquid flow in order to determine this gradient.

If potential flow is assumed in the liquid, then
F(&) = ¢ and equation (17) may be solved analyti-

cally yielding
2pr M2
¢'(0) = f(\r[) .

.

(48)

For AT, sufficiently large 4, is small and the non-
linear terms in equation (24) may be neglected. In this
case the temperature gradient in the vapour may be
found independently of the vapour velocity, and thus

P 12
o = 2P, )

The skin friction and heat-transfer coefficients are
given by

(49)

C D b Q !
= 7}’, N == .
! I D;nq

These results depend on the assumption of
potential flow in the liquid; it is therefore necessary
to decide when this is valid. In the range of
temperatures being considered B, is extremely small
and hence the RHS of equation (25) may be
neglected. The tangential stress on the liquid at the
interface has also been neglected although equation
(47) shows that D, is not very small until AT, is very
large. However f”(y,) is numerically small in the
range of interest. Assuming potential flow in the
liquid and assuming A4, to be small then

(50)

" 2n ny G
S (o) = ntl 2 '70.

Thus f"(n,) is small and the assumption of
potential flow valid for a range of temperatures such
that C, is close to f/2Pr,. In fact for f = n/4, f"(n,)
will vanish when AT, =19 for AT, = 200 and AT, =
48 for AT, = 500.

(51)
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In order to check these results equations (16), (17),
(23) and (24) with boundary conditions (25), (26),
(27), (42), (29), (30) (replacing A, by A, etc.) have
been solved numerically at a wedge half angle of n/4
for AT, = 200 and AT, = 500 over the range 5 < AT,
< 95 at steps of 5°C. The results are presented in
Figs. 2 and 3. It can be seen that the analytic results
agree with the numerical results to within a few
percent for AT, > 10 when AT, = 200 and for AT,
> 20 when AT, = 500.

Note that it would appear that as AT, becomes
very large R, becomes small and C, large, and
therefore a further change of variables would be
appropriate. This is indeed the case; however no
simplifications occur which would enable a closed
solution to be determined as the liquid flow is not
close to potential flow and it is still necessary to find

AT, =200

B =% (=ZDy

nel

—— Analytical results
—== Numerical results

— 1

20 30 40 50 60 70 80 90 100

AT

F1G. 2. Comparison of analytical and numerical results for vapour film thickness at AT, = 200, § = n/4.
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\ -—- Numerical results
20~
15
1.0 =
0.5 -
|
0 10 20 30 40 50 60 70 80 90 100
AT,

FiG. 3. Comparison of analytical and numerical results for vapour film thickness at AT, = 500, § = n/4.
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¢'(0). The physical reason why this happens is that
as AT, increases the vapour layer becomes very thin,
so a large tangential stress is exerted on the liguid at
the interface.

CONCLUSION

It has been shown that within the two regimes of
smail and large subcooling values for the skin
friction and heat-transfer coefficients may be ob-
tained by an analytic procedure. These coefficients
have been checked numerically for two typical values
of superheating at a wedge half angle of n/4 for a
water—steam system and have found to be accurate
to within a few per cent except for the range of
subcooling where no term is negligible in the energy
balance at the interface. This range is small—of the
order of 10-20°C for the values of superheating we
have considered.

It has been shown that to a good approximation
potential flow may be assumed in the liquid phase
since for small subcooling it is not necessary to

determine the liquid boundary-layer flow and for
large subcooling the tangential stress exerted on the
liquid at the interface by the vapour is smalil.

Numerical solutions were obtained using the
facilities at UMRCC by means of the NAG library
routine DZF2AGA which solves a two point boundry
value problem by a Runge-Kutta method and
Newton iteration.
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ECOULEMENT DE COUCHE LIMITE DANS LA CONVECTION
FORCEE AVEC EBULLITION EN FILM SUR UN COIN

Résume —La convection forcée avec ébullition en film sur un coin a été étudiée a partir de la théorie de
couche limite diphasique. On montre que leffet du gradient de pression dans le liquide domine la
dynamique de I’écoulement sur une plaque plane ou il n'existe pas de gradient de pression appréciable.
On montre aussi que la structure physique de Pécoulement change selon que le sous-refroidissement du
liquide ¢st “faible™ ou “fort™. En choisissant convenablement différentes variables sans dimension pour
chacun de ces cas, la structure de I'écoulement se refléte dans la structure des équations. On a obtenu des
solutions analytiques exactes & quelques pourcents sur la majeure portion du domaine intéressant. Ces
résultats ont été testés numériquement en prenant des valeurs typiques des paramétres d'un systéme
vapeur—eau.

GRENZSCHICHT-STROMUNG BEI FILMSIEDEN MIT ERZWUNGENER
) KONVEKTION AN EINEM KEIL

Zusammenfassung — Es wurde Filmsieden an einem Keil bei erzwungener Konvektion mittels der Zwei-
Phasen-Grenzschichttheorie untersucht. Es zeigte sich, daB der Einflub des Druckgradienten in der
Fliissigkeit die Stromungsdynamik in der Dampfschicht bestimmt. Hier besteht ein Unterschied zur
Stromung an einer ebenen Platte, bei der kein merklicher Druckabfall auftritt. Weiter wurde gezeigt, daf3
die physikalische Struktur der Strémung wechselt, je nachdem die Fliissigkeitsunterkiihlung “klein” oder
“groB” ist. Durch sorgfdltige Wahl verschiedener dimensionsloser Variabler fiir jeden dieser Fille wurde
die Struktur der Strémung im Aufbau der Gleichungen wiedergegeben. So erhielt man einfache
analytische Losungen, die innerhalb einer Fehlergrenze von wenigen Prozent iiber der groBeren Teil des
interessierenden Parameterbereichs genau sind. Diese Resultate wurden numerisch gepriift, wobei
typische Werte der Parameter fiir Wasser benutzt wurden.

TEYEHUE B MMOrPAHUYHOM CJIOE HA NMOBEPXHOCTU KJIHWHA NPU HAJIUYUH
TUIEHOUHOTO KUMEHNAS U BbIHYXJIEHHOW KOHBEKLIMM

Annoraima — C NOMOWbIO TeopuH ABYX(A3HOro NOTPAHHYHOTO CJIOS HCCJIENOBAHO MIIEHOYHOE
KHIEHHE HA TOBEPXHOCTH KJIMHA NPH HaJIMYMH BbIHYXAeHHOH koupekuuM. [lokasano, 4To rpaaueHt
[ABJICHHA B XHAKOCTH OKa3biBaeT OOJiblliee BIMAHNE HA NPOLECC, YEM ITHHAMHUKA TEYEHHS B NMapOBOM
cj10e. DTOT BLIBOJA OT/MYAETCS OT Ciyuyas OOTeKaHMS MJIOCKOH MIACTHHBL, TOE TPAdHEHT AaB/ICHHS
NpaxTHYECKH OTCYTCTBYeT. [ToKa3aHO TakXe, YTO B 3aBUCHMOCTU OT BENM4UHbLI HEAOTPEBA KHIKOCTH
MeHseTCs (PHIUMECKAs CTPYKTypa MoToka. B kaxaom u3 3Tux cnydaep 6e3pa3MepHble MEpeMEHHbiE
BLIOpaHbl TAKHM 00pa3oM, 4TO CTPYKTYpa YpaBHEHMHl OTpaxaeT (U3HUECKYIO CTPYKTYpy HOTOKa.
TTonyueHbl NPOCTbIE AHATMTUYECKME PEUICHHA, alolllHe NOTPEIUHOCTL B HECKOJILKO UPOLEHTOB A
NpeACTaBAAIONIeH HHTepec OGonblueil YaCTH AMAaNa3OoHa HM3MEHEHMs NapameTpa. JTH pPe3ynbTaThi
IPOBEPEHbl YHCJIEHHO TPH MCIONL3OBAHMH THIMYHBIX 3HAYCHHH MapameTpoB A Mapo-BOASHOM
CHCTEMBIL.



