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Abstract-Forced convection film boiling on a wedge has been investigated by means of two-phase 
boundary-layer theory. It has been shown that the effect of the pressure gradient in the liquid dominates 
the dynamics of the flow in the vapour layer. This is in contrast to the flow past a flat plate where no 
appreciable pressure gradient exists. It has also been shown that the physical structure of the flow 
changes according as the liquid subcooling is “small” or “large”. By carefully choosing different 
dimensionless variables for each of these cases the physical structure of the flow was reflected in the 
structure of the equations. Simple analytical solutions have thus been obtained which are accurate to 
within a few per cent over the greater portion of the parameter range of interest. These results have been 

checked numerically using typical values of the parameters for a water-steam system. 

NOMENCLATURE 

f. dimensionless stream function in vapour; 
h, characteristic thickness of vapour film; 
h 03 actual thickness of vapour film; 
h 
i;l” 

enthalpy of evaporation: 
thermal conductivity; 

n, = P/n-/$ similarity number; 

P* pressure ; 

4, heat transfer at the wall; 

14 0, velocity components; 

x,y, coordinates ; 
A,B,C,D.E, dimensionless parameters; 

/ q \ 1:2 

skin friction coefficient ; 
dimensionless stream function in liquid; 

heat-transfer coefficient ; 

Nu, , = i-i%, Nusselt number; 
I’ t, 

Pr, Prandtl number; 

R, = V/U, velocity ratio; 
r L , = h/6, thickness ratio ; 
T, temperature; 
u, N x”, external velocity; 
V. characteristic vapour velocity; 
Ax,, temperature difference in vapour; 
A7;, temperature difference in liquid. 

Greek symbols 

% thermai diffusivity ; 

89 wedge half-angle ; 
4 liquid boundary-layer thickness; 

?2 similarity variable in vapour ; 

‘lo, dimensionless height of interface; 

4 dimensionless temperature in vapour ; 

34 absolute viscosity; 

1’3 kinematic viscosity; 

P* density ; 

V? dimensionless temperature in liquid: 
F 57 similarity variable in liquid; 
5 

;’ 

skin friction at wall; 
stream function in vapour; 

q’, stream function in liquid. 

Subscripts 

1. liquid property ; 
I’, vapcur properties; 

1, small subcooling parameter; 
? + large subcooling parameter. 

INTRODUCTION 

INVESTIGATIONS of film boiling are usually concerned 
with one of the two cases of forced or free 
convection. In forced convection the motion is 
generated by an oncoming stream of liquid and it is 
assumed that buoyancy forces are negligible, whereas 
in free convection there is no prescribed flow at large 
distances from the heated surfaces and the motion is 
generated by the buoyancy forces within the vapour 
and liquid layers. We consider here the former case, 
that of forced convection. 

Forced convection over a flat plate has been 
analysed previously by Cess and Sparrow [l] using a 
combination analytical-numerical method. They 
showed that if the superheating is not too large the 
inertia terms in the vapour phase may be neglected 
and hence the vapour equations linearised, but they 
found it necessary to use numerical results for the 
liquid phase in order to determine a boundary 
condition on the vapour at the interface. Their work 
has been extended by Tto and Nishikawa [2] to 
cover a larger range of temperatures though this 
necessitated solving the equations in both phases 
numerically. For flow past a flat plate there is of 
course no appreciable pressure gradient in the liquid. 
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For bodies of any finite thickness, however, pressure these are equivalent to 
gradients will exist in the liquid and when the flow is 
of boundary-layer type this pressure gradient will be 
transmitted to the vapour layer, where its effect will 

be greatly enhanced because of the large density 11 ttq = %p 

ratio. It will be shown that this effect dominates the 

dynamics of the vapour layer, and for this reason the 

flat-plate solution should be regarded as somewhat 
over-idealised. 

The significance of pressure gradients in the liquid 

has not been properly evaluated in the published 
literature; for example, Hsiao et al. [3], who 
considered flow past a sphere, erroneously omitted 

the relevant term completely. It seems desirable, 
therefore, to begin by considering the simple case of 
flow past a wedge for which similarity solutions are 

available. (See Fig. 1 for a sketch of the coordinate 
system.) 

Pliq = Pvap 

Tiq = Trap = T, 

(6) 

A further contribution made in the present paper In the vapour it is also assumed that the 
is to explain the advantages of a careful choice of boundary-layer equations hold: hence we have (1) 
dimensionless variables so as to reflect the true and (3) with vapour properties replacing liquid 
physical structure of the flow. No attempt to do this properteis. However equation (8) requires that 
was made in [l] or [2], and although the solutions pressure is continuous at the interface, so that 
obtained by those authors are formally correct they equation (2) becomes 
depend heavily on computed graphs and tables. By 
contrast we show that in two limiting cases, 

corresponding (roughly speaking) to small and large 
values of the liquid subcooling. simple analytical The boundary conditions at the wedge surface and 
solutions can be found which are accurate to within in the undisturbed flow are 
a few per cent over the greater portion of the 
parameter range of interest. 

u = I’ = 0. T = To at J‘ = 0 (12) 

Typical values of parameters have been given for a II = U. T = T,_ at \’ = cc. (13) 
water steam system. 

SIMILARITY TRANSFORMATIONS 

CONSERVATION EQUATIONS AND The problem of selecting suitable dimensionless 
BOUNDARY CONDITIONS similarity variables now arises; this is done so that 

It is assumed the boundary-layer equations hold the velocity and temperature fields are described by 
in the liquid phase near the interface : order 1 dimensionless functions. 

?U -+%O, 
It is expected that the liquid velocity will be of the 

ax a)’ 
(1) same order of magnitude as the free stream velocity, 

hence the following variables are defined for the 

au au 1 ap a211 liquid phase: 
u--fo_= ---++,--_1, 

au CJ p, ax ay (2) 

ST aT S2T 
UK-5 =‘yqjT. (3) Here Y is the stream function so that u = C/F’ and 

F’ will be an order 1 quantity as required, ci is the 

It is assumed that the properties of the liquid and liquid boundary-layer thickness 

vapour are constant. The pressure gradient in (2) is 
determined by the flow at the outer edge of the (15) 
boundary layer and is constant across it: 

Substituting into (2) and (3) it follows that 

(4) 211 
F”’ + FF” + ,lri (1 - P) = 0 (16) 

At the interface between the liquid and vapour it is 
required that the following quantities should be 

and 

continuous: (a) mass flow crossing the interface, (b) 
cp” + Pr, Fcp’ = 0. (17) 

tangential velocity, (c) tangential stress, (d) normal However in the vapour phase the term due to the 

stress, (e) temperature; there must also be an energy pressure gradient is very large because of the low 
balance. Within the boundary-layer approximation density of the vapour compared with that of the 



liquid; there is therefore no reason to expect the 
vapour velocity to be of order U. Since the viscous 
term in the vapour momentum equation (13) must 
be important for the no slip condition to be satisfied 
at the wedge surface a balance is set up between the 
pressure gradient and viscous terms. If the vapour 
velocity is of order I/ and the film thickness is of 
order h, this balance gives 
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f?(O) = q?(O) = 1, 8&) = o(co) = 0 (29) 

-f(O) = f’(0) = 0, F’(m) = 1. (30) 

The boundary conditions have been presented in 
the form in which they will be applied; thus if the 
quantities on the RHS of the equations are known 
then the quantities on the LHS are the given 
boundary conditions. 

Sitnpl$zcation. The dimensionless variables have 

(18) been constructed so that E, is small when the 
subcooling is small: 

An examination of equation (10) now shows that 
the heat transferred from the wedge surface to the 
interface may be accounted for in one of two ways 
(a) vaporisation of the liquid or (b) conduction 
through the liquid. 

The cases when either (a) or (b) is dominant are 
now considered. 

(i) Small subcooling 
Suppose first that (a) is dominant, then the 

subcooling is small. In order for the relevant terms in 
(10) to balance it is necessary that 

where use has been made of the continuity equation 
(1) to determine the order of v. 

Eliminating h2/x between (18) and (19) yields 

V2 PI k,A.T, -_= 
u2 

--CR; 
PI, Icd,, 

-2Aq, (20) 

and (15), (18) and (19) give 

h 
-= 
fi 

-‘- 0.3AT,“4 (21) 

where values of the coefficients have been determined 
for a water-steam system. Note that for typical 
values of ATV, the order of I/ will be much larger 
than U as was anticipated. 

The following variables are therefore defined for 
the vapour phase: 

T-T, 
? = y/h, ti = W.(r), O(V) = ATV . (22) 

Then u = a$/Zy = Vf’ and hence f’ will be order 1 
as required. Substituting into (13) and the vapour 
phase equivalent of (3) it follows that 

B”+A,Pr,fB’= 0. (24) 

It remains to determine the boundary conditions 
(5)-(12) in terms of the new variables. (Note that 
since 5 does not appear explicitly in the equations or 
boundary conditions the interface can be taken at 5 
= 0 without any loss of generality.) These become 

F(O) = B,f(rlo), f’(~iJ = C,F’(O) (25)>(26) 

F”(0) = D,f”(J?o), 

~~~~)+~{~~) = E, V’(O) (27,)(28) 

This gives us the skin friction and heat-transfer 
coefficients 

In order to check these results (16). (17), (23) and 
(24) with boundary conditions (25))(30) have been 
solved numerically at a wedge half angle of rr/4 for 
Ax. = 200 and 67;. = 500. (For numerical work the 

.- _ values Pr, = 0.996 and Pr, = 1.74 were used.) 

Hence if 67; is sufficiently small we may neglect the 
RHS of equation (28). The other parameters are 

Al =P”R; 5 8.8 x 10-4A7;. (32) 
PI 

B, = SRI& -h 2 x 10-4AT.3’4 (33) 
Pi 

C, = R;’ * 0.7Aq- ‘G (34) 

If, = s, 2 0.3AT.r” L 7 (35) 

where again the values of coefficients have been given 
for a water-steam system. Note that AL\7; does not 
appear in any of the parameters A,, B,, C,, D, since 
there are no significant temperature variations in the 
liquid. 

The vapour phase is coupled to the liquid 
boundary layer only through the boundary con- 
dition applied at the interface. However C, is small 
and for AT, sufficiently large the RHS of (28) is 
negligible. It is then not necessary to determine the 
liquid Row in order to solve the vapour equations, 
although having solved the vapour equations it is 
then possible to substitute back into the boundary 
conditions (25) and (27) and hence solve the liquid 
equations. 

The physical situation is that the main body of the 
vapour is travelling at such a speed relative to the 
liquid that its velocity at the interface may be 
neglected to a first approximation; this is due to the 
effect of the large pressure gradient in the vapour. 

Further, if A, is small the non-linear terms in (23) 
and (24) will be negligible and the solution of the 
vapour equations may be obtained in a closed form. 
Hence 

/&,ili4 
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The analytic solution (36) is q0 = 2.21 whereas the 

numerical solutions give q0 = 2.098 for ATc = 200 
and ‘lo = 2.099 for ATG = 500 (in both cases AT, 
= 0). There may be two reasons for the discrepancy, 

(i) the neglect of the inertia terms, or (ii) the neglect 
of the velocity at the interface. In order to find the 

next order terms a perturbation analysis may be 
carried out in each case, in (i) by taking A, as a 

small parameter, and in (ii) by perturbing about the 
potential flow solution F = <. Boundary conditions 
on F may be obtained using the analytic solution for 

f‘(qO) and f”(v,,) in (25) and (27); however B, is very 
small so that F(0) = 0 may be taken. It is found that 
the effects of (ii) are much greater than the effects of 

(i) and incorporating this correction then to leading 

order in the small quantity C, 

(j1,2 

I- y(O)C, 
1 

(38) 

where 

Dl 6n 1’4 
F’(O)=l+o1;2 _o 0 

This yields the estimate q0 = 2.11 in satisfactory 

agreement with the numerical solution. 
The numerical solution for q0 decreases rapidly 

when subcooling is introduced and examination of 
equation (28) shows that this is to be expected. For 

example, at A7;, = 200, A?; = 3.5 the numerical 
solution gives q. = 1.81. Obviously it is possible to 

solve the equations numerically for any value of A’& 

However as AT increases it is apparent that the 
physical situation changes, the liquid conduction 

term soon dominates equation (10) and the vapour 
film thickness changes in order to accommodate the 

given subcooling in the liquid. A different choice of 
dimensionless variables would therefore seem 

suitable. 

(ii) Large subcooling 
Most of the heat arriving at the interface is now 

conducted away through the liquid. Hence 

(39) 

It is still necessary to maintain the balance given 

by equation (18), and 0 (6) is determined by equation 

(15). Equations (39) (15) and (18) imply 

h k,AT, 
-=---=Ss2 
b k,AlT; 

=0.05%. (41) 
I 

Note that the order of V is dependent on AT, for a 
given AT,, and so will not in general be of order U. 

Defining similarity variables in the same form 
given by equation (22) and substituting into the 
momentum, energy equations and boundary con- 
ditions, equations (23)-(30) are obtained except that 
equation (28) is replaced by 

(n’(O)- @@I,) = EJ(%J (42) 

and A,, B,, C,, D, are replaced by A,, B2, C,, D2. 

Simplijcntion. The variables have been constructed 

so that E, will be small if A7; is large: 

PC P,Jl,, 2 
E, =-- .-R, 

or k,.AT, 

Hence if A7j is sufficiently large we may neglect the 

RHS of equation (42). The other parameters are 

A 
2 

= /‘I: R’ 
2 (44) 

I’1 

B &)I.RS 
2 2 2 (45) 

Pl 

Cz = R;-’ (46) 

D, = S, (47) 

The situation is not as in case (i) where it was 

possible to solve the vapour equations without 

determining the liquid boundary-layer flow, since the 

solution is now dependent on the temperature 
gradient in the liquid via (42). It is necessary to know 

the liquid flow in order to determine this gradient. 
If potential flow is assumed in the liquid, then 

F(4) = 5 and equation (17) may be solved analyti- 
cally yielding 

q’(O) zz - 2?! ( J 
I ,‘2 

lT 

For AIT; sufficiently large A, is small and the non- 

linear terms in equation (24) may be neglected. In this 

case the temperature gradient in the vapour may be 

found independently of the vapour velocity, and thus 

/ _ 11’2 
II 

‘O = 2Pr, L---J 
The skin friction and heat-transfer coefficients are 

given by 

C,= D2~qo, ‘1 
Q=-. 

ll D2vo 

These results depend on the assumption of 
potential flow in the liquid; it is therefore necessary 

to decide when this is valid. In the range of 
temperatures being considered B, is extremely small 

and hence the RHS of equation (25) may be 
neglected. The tangential stress on the liquid at the 

interface has also been neglected although equation 
(47) shows that D, is not very small until A.7; is very 
large. However ,f”(r~~) is numerically small in the 
range of interest. Assuming potential flow in the 
liquid and assuming A, to be small then 

,f”(llo) = - 2; 2 + 2 

Thus f”(qJ is small and the assumption of 
potential flow valid for a range of temperatures such 
that C, is close to p/2Pr,. In fact for 0 = z/4, ,f”(qO) 
will vanish when AT, * 19 for 67; = 200 and A,7; -h 
48 for 117;. = 500. 
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x 

T,, U 

FIG. I 

In order to check these results equations (16), (17), 

(23) and (24) with boundary conditions (25), (26), 

(27), (42), (29), (30) (replacing A, by A, etc.) have 

been solved numerically at a wedge half angle of 7-c/4 

for AT, = 200 and AT, = 500 over the range 5 d A7; 
< 95 at steps of 5°C. The results are presented in 
Figs. 2 and 3. It can be seen that the analytic results 
agree with the numerical results to within a few 
percent for A7; > 10 when AT, = 200 and for A7; 

> 20 when A7;. = 500. 
Note that it would appear that as A7; becomes 

very large R, becomes small and C, large, and 

therefore a further change of variables would be 
appropriate. This is indeed the case; however no 

simplifications occur which would enable a closed 
solution to be determined as the liquid flow is not 

close to potential flow and it is still necessary to find 

AT, =200 

- AnalytIcal results 
--- Numerical results 

FIG. 2. Comparison of analytical and numerical results for vapour film thickness at AT. = 200, /I = n/4. 

AT” = 500 
p’$ (.$) 

- AnalytIcal results 

--- Numerical results 

I 1 I I I I / I I I I 

0 IO 20 30 40 50 60 70 80 90 I00 

AT, 

FIG. 3. Comparison of analytical and numerical results for vapour film thickness at AT, = 500, /j = n/4. 
HMT Vol. 22, No. 4 F 
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4’(O). The physical reason why this happens is that 

as AT, increases the vapour layer becomes very thin, 
so a large tangential stress is exerted on the liquid at 
the interface. 

CONCLUSION 

It has been shown that within the two regimes of 

small and large subcooling values for the skin 
friction and heat-transfer coefficients may be ob- 

tained by an analytic procedure. These coefficients 

have been checked numerically for two typical values 
of superheating at a wedge half angle of n/4 for a 

water-steam system and have found to be accurate 
to within a few per cent except for the range of 

subcooling where no term is negligible in the energy 
balance at the interface. This range is small-of the 
order of lo-20°C for the values of superheating we 

have considered. 
It has been shown that to a good approximation 

potential flow may be assumed in the liquid phase 
since for small subcooling it is not necessary to 

determine the liquid boundary-layer flow and for 
large subcooling the tangential stress exerted on the 
liquid at the interface by the vapour is small. 

Numerical solutions were obtained using the 
facilities at UMRCC by means of the NAG library 

routine D02AGA which solves a two point boundry 
value problem by a Runge-Kutta method and 
Newton iteration. 
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ECOULEMENT DE COUCHE LIMITE DANS LA CONVECTION 
FORCEE AVEC EBULLITION EN FILM SUR UN COIN 

RPsumC La convection for&e avec tbullition en film sur UP coin a ttt ktudite ti partir de la thtorie de 

couche limite diphasique. On montre que l’effet du gradient de pression dans le liquide domine ia 
dynamique de I’Ccoulement sur une plaque plane oti il n’existe pas de gradient de pression appriciable. 
On montre aussi que la structure physique de I’tcoulement change selon que le sous-refroidissement du 

liquide est “faible” ou “fort”. En choisissant convenablement diffirentes variables sans dimension pour 
chacun de ces cas. la structure de I’tcoulement se refltte dans la structure des iquations. On a obtenu des 
solutions analytiques exactes B quelques pourcents sur la majeure portion du domaine intkressant. Ces 
rtsultats ont tt6 test& numtriquement en prenant des valeurs typiques des paramitres d’un systtme 

vapeur-eau. 

GRENZSCHICHT-STRCjMUNG BE1 FILMSIEDEN MIT ERZWUNGENER 
. 

KONVEKTION AN EINEM KEIL 

Zusammenfassung-Es wurde Filmsieden an einem Keil bei erzwungener Konvektion mittels der Zwei- 
Phasen-Grenzschichttheorie untersucht. Es zeigte sich, daB der EinfluB des Druckgradienten in der 
Fliissigkeit die Stramungsdynamik in der Dampfschicht bestimmt. Hier besteht ein Unterschied zur 
Strijmung an einer ebenen Platte, bei der kein merklicher Druckabfall auftritt. Weiter wurde gezeigt, da8 
die physikalische Struktur der Striimung wechselt, je nachdem die Fliissigkeitsunterkiihlung “klein” oder 
“gron” ist. Durch sorgftiltige Wahl verschiedener dimensionsloser Variabler fir jeden dieser FIIIe wurde 
die Struktur der StrGmung im Aufbau der Gleichungen wiedergegeben. So erhielt man einfache 
analytische LGsungen, die innerhalb einer Fehlergrenze von wenigen Prozent iiber der griil3eren Teil des 
interessierenden Parameterbereichs genau sind. Diese Resultate wurden numerisch gepriift, wobei 

typische Werte der Parameter fir Wasser benutzt wurden. 

TEqEHME B HOl-PAHBqHOM CJIOE HA l-lOBEPXHOCTM KJIMHA rIPM HAJIW-IMM 
nJIEHOqHOI-0 KM~EHRII M BbIHYlKflEHHOfi KOHBEKqMM 

AHH~TP~HR - C nOMOII,bH) TeOpWi nByX+a3HOrO norpaHavHor0 CJlOIl HCCneAOBaHO nJliHO’iHOe 
KRneHHe Ha IIOBepXHOCTH KJBHa IIpH HaJIWYWB BblHyWteHHOfi KOHB‘ZKIWH. nOKa3aH0, ‘IT0 rpaLWeHT 

naBJIeHRIl B W~~KOCTH OKa3bIBaeT 6dnbmee BJIIRHIie Ha IIPOIWC, ‘ICM AHHaMAKa TeWHHR B napOBOM 

C,VOe. 3TOT BblBOL, OTJIW’IaeTCII OT CJIy’IaS 06TeKaHkiX IlJlOCKOfi nJIaCTWHb1, I-e rpanHeHT naBJleHIiI 

IIpaKTWIeCKH OTCyTCTIIyeT. ,-,OKa3aHO TaKN?, ‘4TO B JIBACWMOCTB OT BWIIi’IHHbI HWOrpeBa XWIKOCTA 

MeHleTCIl @H3H’teCKal CTpyKTypa IIOTOKB. B KamAOM W3 3TIiX CJIy’IaeB 6e3pa3MepHbIe nep‘ZM’.?HHbIe 

BbI6paHbl TaKBM 06pa30~, ST0 CTpyKTypa ypaBHeHHii OTpa)KaeT @H3WWKyIO CTpyKTypy IlOTOKa. 

nOnyWHb1 npocrbIe aHanIiT89ecKIie pemeHwt, namwie norpemHocTb B IiecKonbKo npoueHToB .4w1 

npencraanalomeii esTepec 6onbmeii qawi nkiana30Ha U3MeHeHIiR napaMeTpa. 3TR pe3yJIbTaTM 

np0sepem.I wcneIw0 nprr Iicnonb30BaHwI TwnwIb~x 3HaqeHG napaMeTpoB iIna napo-Bonaeoii 

CIiCTeM b1. 


